Show simple item record

 
dc.contributor.author Kocoń, Jan
dc.contributor.author Zaśko-Zielińska, Monika
dc.contributor.author Miłkowski, Piotr
dc.date.accessioned 2019-09-19T10:38:37Z
dc.date.available 2019-09-19T10:38:37Z
dc.date.issued 2019-09-19
dc.identifier.uri http://hdl.handle.net/11321/710
dc.description PolEmo 2.0: Corpus of Multi-Domain Consumer Reviews, evaluation data for article presented at CoNLL Citation: @inproceedings{kocon-etal-2019-multi, title = "Multi-Level Sentiment Analysis of {P}ol{E}mo 2.0: Extended Corpus of Multi-Domain Consumer Reviews", author = "Koco{\'n}, Jan and Mi{\l}kowski, Piotr and Za{\'s}ko-Zieli{\'n}ska, Monika", booktitle = "Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)", month = nov, year = "2019", address = "Hong Kong, China", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/K19-1092", doi = "10.18653/v1/K19-1092", pages = "980--991", abstract = "In this article we present an extended version of PolEmo {--} a corpus of consumer reviews from 4 domains: medicine, hotels, products and school. Current version (PolEmo 2.0) contains 8,216 reviews having 57,466 sentences. Each text and sentence was manually annotated with sentiment in 2+1 scheme, which gives a total of 197,046 annotations. We obtained a high value of Positive Specific Agreement, which is 0.91 for texts and 0.88 for sentences. PolEmo 2.0 is publicly available under a Creative Commons copyright license. We explored recent deep learning approaches for the recognition of sentiment, such as Bi-directional Long Short-Term Memory (BiLSTM) and Bidirectional Encoder Representations from Transformers (BERT).", }
dc.language.iso pol
dc.publisher Wrocław University of Science and Technology
dc.rights Creative Commons - Attribution 4.0 International (CC BY 4.0)
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.label CC
dc.subject sentiment analysis
dc.subject Polish
dc.subject consumer reviews
dc.title PolEmo 2.0 Sentiment Analysis Dataset for CoNLL
dc.type corpus
metashare.ResourceInfo#ContentInfo.mediaType text
hidden false
hasMetadata false
has.files yes
branding CLARIN-PL
contact.person Jan Kocoń jan.kocon@pwr.edu.pl Wrocław University of Science and Technology
size.info 8216 texts
files.size 49577463
files.count 4


 Files in this item
 Download all files in item (47.28 MB)

This item is
Distributed under Creative Commons
and licensed under:
Creative Commons - Attribution 4.0 International (CC BY 4.0)
Attribution Required
Icon
Name
dataset_conll.zip
Size
22.86 MB
Format
application/zip
Description
PolEmo 2.0 - CoNLL 2019 (zip)
 Download file
Icon
Name
dataset_conll.7z
Size
3.49 MB
Format
Unknown
Description
PolEmo 2.0 - CoNLL 2019 (7z)
 Download file
Icon
Name
dataset_ranlp.zip
Size
15.18 MB
Format
application/zip
Description
PolEmo 1.0 - RANLP 2019 (zip)
 Download file
Icon
Name
dataset_conll_raw.zip
Size
5.75 MB
Format
application/zip
Description
PolEmo 2.0 - CoNLL 2019 (zip, raw data)
 Download file

Show simple item record